DON WHITLEY SCIENTIFIC – THE LEADING INTERNATIONAL SUPPLIER TO THE MICROBIOLOGY AND TISSUE CULTURE INDUSTRIES


Contact Us +44 (0) 1274 595728 sales@dwscientific.co.uk

Follow Don Whitley Scientific

Posts Tagged ‘Cancer Research’

bacr 2017 2

A Manic Month Continues for DWS

June continues to be busy for Don Whitley Scientific, with 6 exhibitions and events attended already. And we have two more to go!

In the month of June, we have attended several meetings and exhibitions that featured topics ranging from pathology, cancer research, LIMS systems and more. We helped to administer the 2017 Practical and Clinical Microbiology of Anaerobes Course, hosted by the UK Anaerobe Reference Unit, Cardiff. It was once again a fantastic success.

Next week (26th-28th June) DWS will be attending the Association for Radiation Research Annual Meeting, which this year focuses on the topic “Improving Radiotherapy Response through Radiation Research” featuring speakers from cancer research institutes from around the world. Don Whitley Scientific will have an exhibition stand at this meeting displaying the Whitley H45 Workstation. There will also be an interactive touchscreen presentation, which allows users to explore the full range of Whitley Workstations.

On 4th July we will also have an exhibition stand at the Society for Applied Microbiology Annual Applied Microbiology Conference at the BALTIC Centre in Gateshead. This meeting will focus on new insights into food safety. Here we will exhibit the ProtoCOL and WASP Touch, two products that provide real benefits in food microbiology applications.

 

Scientist Working in Whitley Workstation

Hypoxia in the Tumour Microenvironment

Hypoxia in the tumour microenvironment affects all the characteristic Hallmarks of Cancer, significantly impacting progression of the cancer and the patients’ prognosis. Inflammation and immunity are both acutely influenced by the low oxygen typical of the tumour microenvironment: hypoxia creates an immune-suppressive network supporting tumour growth and metastasis, and it induces sustained inflammation in a “wound that never heals”.

Cancer research depends on recreating a physiologically accurate environment for cell cultures in the lab, and hypoxia in a closed workstation format such as a Whitley Hypoxystation is the best way to do that. Incubate, image, manipulate and assay – all inside the continuous, reliably stable hypoxic environment. HEPA filtered air scrubbed to ISO 14644 class 3 standards, sterile humidity, and containment options make the Hypoxystation the safest, cleanest workstation available for hypoxic cell culture down to 0.1% O2.

Our Hypoxystation users are investigating all aspects of the Hallmarks of Cancer and how they are shaped by hypoxia. We review their recent research on Avoiding Immune Destruction and Tumour Promoting Inflammation here.

 

hypoxia

jane-freeman-thumbnail

Why Choose a Whitley Workstation?

There are many reasons to choose a Whitley Workstation when it comes to Anaerobic, Hypoxic or Microaerophilic work. We can discuss these with you anytime, but we also have plenty of satisfied customers who have expressed why using a Whitley Workstation improves their working methods and results.

Over the years, customers have supplied us with many testimonials about their Don Whitley Scientific products. From these we can see that not only have Whitley Workstations become approved by fantastic researchers worldwide, but we can also help promote the amazing work that is done by our customers.

Dr Vaibhao Janbandhu at the Victor Chang Cardiac Research Institute (VCCR) in Sydney, Australia uses a Whitley H35 Hypoxystation in his work on finding new ways to stimulate heart regeneration during ageing and after heart attack. He uses his H35 Hypoxystation to isolate, culture and characterise adult cardiac stem cells. In Dr Janbandhu’s words the H35 is “an integral part of the project to advance the project aims”.

In this video testimonial, Jane Freeman at Leeds General Infirmary explains how her Whitley A95 Workstation improves the working methods in her Clostridium difficile research. Jane reports that she and her team are able to use the workstation for “several hours at a time in relative comfort” and that the workstation is able to house all the technical equipment her team requires. This allows “the whole experiment to be performed in optimum conditions without introducing air at all”. Jane explains that “reliability, versatility and space are the significant benefits of the workstations in our work on Clostridium difficile“.

The Institute of Cancer Research in London is one of the world’s most influential research institutes, with an outstanding record of achievement dating back more than 100 years. At the Institute, George Poulogiannis uses a combination of Whitley i2 Instrument Workstation (with Seahorse XF Analyzer) and Whitley H35 Hypoxystation in his research into breast cancer. Hypoxia is a key factor in the “Hallmarks of Cancer” and this team are studying the role of hypoxia in cell invasion and metastasis, oncogene-induced senescence and resistance to current treatment options. The i2 and H35 replicate a physiologically relevant atmosphere for these studies, enabling consistent and reliable results. This combination of Workstations is also used by Dr Ayse Latif, who is researching gynaecological cancers at The University of Manchester.

Don Whitley Scientific would like to take this opportunity to thank all customers who have provided testimonials. If you would be interested in supplying a testimonial, please contact Alex_Rhodes@dwscientific.co.uk.

Take a look at our other testimonials

capture

Hypoxia and the Hallmarks of Cancer

Therapeutic Targeting of Hypoxia and HIFs in Cancer. Dr Burga Kalz Fuller from US distributor HypOxygen has summarised this study that outlines the Hallmarks of Cancer.

“Tumour hypoxia and HIFs affect most of the cancer hallmarks… and contribute to chemo- and radiotherapy resistance.” In their review from 2016, Wigerup, Pahlman and Bexell of Lund University in Sweden discuss how hypoxia inducible factors HIFs regulate the hypoxic microenvironment in cancer, and the therapeutic strategies that are being developed to improve patients’ prognosis. Dr. Sven Pahlman’s lab has been using the H35 Hypoxystation for more than 5 years, to research SCLC and neuroblastoma, and their data is contributing to the understanding of the role of oxygen levels in the progression of cancer.

Hypoxia and HIF-1α and 2α expression in cancer usually signify a worse prognosis, but most hypoxia-induced transcriptional, translational, and epigenetic changes are cell-type specific. Many effects engendered by hypoxia are mediated directly or indirectly via HIF pathways, and most are causative of the iconic “Hallmarks of Cancer” that Hanahan and Weinberg introduced in 2000 and expanded in 2011. Hypoxia induces increased autophagy, apoptosis, and aberrant cell proliferation; neoangiogenesis mediated by VEGF and PDGF-β; proliferation of cancer stem cells; metabolic reprogramming to satisfy energy and synthetic requirements in proliferating cells; modulation of inflammation and immune responses; genomic instability through increased mutagenesis and diminished DNA repair; and metastasis as hypoxia induces epithelial-to-mesenchymal transition and degradation of the extracellular matrix. Assaying the relationship between hypoxia and the Hallmarks of Cancer benefits significantly from the physiological atmosphere mimicked in the Hypoxystation, a closed-culture hypoxia workstation controlling gasses, temperature and humidity.


Visit Don Whitley Scientific and HypOxygen at

Keystone Adaptations to Hypoxia and Tumour Metabolism

Location: Whistler, BC  Date: 5th – 9th March

Sven Pahlman


In their review, Wigerup and Pahlman describe the role tumour hypoxia plays for cancer therapy and treatment resistance, as oxygen levels, production of reactive oxygen species ROS, and HIF activity are intertwined actors in the cancer battle. Any and all effects of hypoxia are cell-type specific; however, numerous studies indicate that HIF’s mediate chemoresistance, suggesting that HIF-1 and 2 inhibitors can effectively support cancer therapy. The authors state that “since hypoxia is a hallmark of solid tumours and mediates aggressive, metastatic, and resistant disease, it is arguably one of the most attractive therapeutic targets in cancer.” Strategies selectively targeting hypoxia for cancer therapy include hypoxia-activated prodrugs; inhibitors of HIF mRNA and protein expression; and inhibitors of downstream HIF signalling pathways such as VEGF. Effective drug research relies on authentic replication of the hypoxic environment for cell culture: the Hypoxystation used in the Pahlman lab is able to accommodate long-term assays with sterile steam humidification and HEPA clean air. The Hypoxystation concept “Choose your Atmosphere – Define your Environment” is the best way to ensure cell culture reflects physiology in cancer research and therapy.

Hypoxia is at the heart of the Hallmarks of Cancer, and results such as these from the Pahlman lab make the cancer research community hopeful that “HIF inhibition is likely to be a powerful therapeutic approach” to eradicate cancer.

 

Hallmarks of Cancer

KONICA MINOLTA DIGITAL CAMERA

The Hallmarks of Cancer

The Hallmarks of Cancer are a specific set of characteristics that are inherent to cancer. The Hallmarks were published by Hanahan and Weinberg in 2000 (updated in 2011) and have become extremely recognisable in the cancer research community both as a scientific concept and as a strong, visual image.

The Hallmarks of Cancer have been an area of study for several years and a key focus of research into causes and progression of cancer. One such study by a lab in Sweden using the H35 Hypoxystation, entitled “Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer” by Wigerup, Pahlman and Bexell links cancer characteristics with hypoxia as an underlying cause.  This review of hypoxia-driven cancer characteristics and tumour progression makes a crucial connection between hypoxia and the “Hallmarks of Cancer”, a set of specific characteristics that are inherent to cancer. There are many more publications showing that hypoxia is intimately involved in every aspect of the disease complex cancer.

The image below summarises the 9 Hallmarks of Cancer. The Hypoxystation in the middle of the graphic symbolises how the low oxygen environment re-creates the atmosphere where cancer cells are required to act in a physiological manner. The dial around the Hypoxystation indicates the different levels of oxygen required for specific types of cancer work. Ultimately, the graphic shows how the Hypoxystation facilitates a level of oxygen that cannot be achieved reliably in an incubator, and which is necessary to effectively research cancer therapies.

hypoxia-and-the-hallmarks-of-cancer

Graphic provided by HypOxygen

 

 

 

Whitley H35 Hypoxystation

The hypoxic secretome induces pre-metastatic bone lesions through lysyl oxidase

 

A new paper has been published in Nature magazine, outlining how hypoxic cancer secretomes induce pre-metastatic bone lesions through lysyl oxidase (LOX).

The study shows how hypoxia is specifically associated with bone relapse in patients with oestrogen-receptor negative breast cancer, and identifies a novel mechanism of regulation of bone homeostasis and metastasis, opening up opportunities for novel therapeutic intervention with important clinical implications.

The researchers, who used a Whitley H35 Hypoxystation (pictured left), came to the following conclusion:

Read more

Wear it Pink

Wear it Pink Day

Friday, 24th October was ‘Wear it Pink for Breast Cancer Campaign’ day and thanks go to all those in Shipley who made an effort to come suitably pink-attired. Thanks also to those who provided/baked cakes and for the donations made – we raised £101.