DON WHITLEY SCIENTIFIC – THE LEADING INTERNATIONAL SUPPLIER TO THE MICROBIOLOGY AND TISSUE CULTURE INDUSTRIES


Contact Us +44 (0) 1274 595728 sales@dwscientific.co.uk

Follow Don Whitley Scientific

Hypoxystations

Whitley Hypoxystation

World Heart Day: Hypoxia in Cardiovascular Disease Research

Cardiovascular disease, including heart disease and stroke, is responsible for approximately 1 in 3 deaths in the US, according to the American Heart Association. World Heart Day on 29 September serves as a platform to educate people on how to take control of their heart health.

Don Whitley Scientific and our US/Canadian distributor HypOxygen would like to take this opportunity to highlight cardiovascular research being carried out around the world – and to say “thank you for being committed to our health.”

Adverse cardiac remodeling after infarction exacerbates myocardial ischemia and increases the likelihood of heart failure. Revuelta-Lopez et al. in Spain present new data showing that in the hypoxic areas of the infarct zone, expression of low-density lipoprotein receptor-related protein 1 (LRP1) is linked to activation of Matrix metalloproteinase (MMP) through Pyk2 phosphorylation, and propose that LRP1 modulation may be a very effective pharmacological target in heart disease. Their H35 Hypoxystation with its controlled low oxygen environment creates physiologically more relevant parameters for cell culture, mimicking ischemia/reperfusion events.

Hypothesizing that Tumor necrosis factor-Related Apoptosis-Inducing Ligand plays a role in ischemic injury during acute myocardial infarction, Jiang et al. have found evidence for a novel immune regulatory mechanism involving TRAIL, ER stress and NF-κB signaling pathways. Culturing their cells in the Hypoxystation H35 at 0.3% oxygen allowed the lab to simulate the ischemia/reperfusion processes that cause cardiomyocyte loss and increase mortality in Coronary Heart Disease.

Hypoxia in the embryonic environment supports maintenance of a primitive glycosaminoglycan-rich heart valve matrix, the specific composition of which determines proper function, and as hypoxia decreases after birth, the extracellular matrix matures. Amofa et al. at Cincinnati’s Children’s Medical Center, using the H35 Hypoxystation, provide new data that exposure of adult heart tissue to hypoxia induces hyaluronan remodeling, GAG accumulation, and degeneration of the extracellular matrix in the heart valve, effects that are implicated in Myxomatous mitral valve disease.

Dr. Michael Cross, Molecular and Clinical Pharmacology Department, University of Liverpool, says of his work with cardiac spheroids : “The H35 allows us to generate oxygen levels that reflect the in vivo physiology these cells would be exposed to. We chose the Hypoxystation with its oxygen profiling feature, which allows us to recreate cycles of ischemia, where oxygen levels typically sink to 1-3%”.

Revuelta-Lopez et al 2017

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image from: Revuelta-Lopez et al. “Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in left ventricular remodelling after myocardial infarction” J Cell Mol Med. 2017 Sep;21(9):1915-1928

 

Amofa et al 2017

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypoxia increases GAGs, Sox9 nuclear localization and Hyal2 expression in cAVOCs.

Image from: Amofa et al. (2017) “Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves” Am J Physiol Heart Circ Physiol. 2017 Aug 25:ajpheart.00209.2017

 

 

 

capture

Hypoxia and the Hallmarks of Cancer: Angiogenesis and Metastasis

The following was provided by HypOxygen, our distributor of Hypoxic Workstations in the US

Hanahan and Weinberg’s “Hallmarks of Cancer” are at the root of the multi-step progression of cancer, and they are all influenced by hypoxia in the tumor microenvironment. In this mini-review series, HypOxygen has been taking a closer look at the way Hypoxystation users worldwide are delineating the effects of hypoxia on the Hallmarks of Cancer: so far, we’ve showcased Avoiding Immune Destruction and Tumor Promoting Inflammation and Genome Instability and Mutation and Enabling Replicative Immortality.

In the Hypoxystation, researchers working with cells in culture can mimic the physiological conditions that produce those characteristic Hallmarks. The Hypoxystation enables glove-less access to cultivate and manipulate cells under physiological conditions, in a HEPA-clean environment. Oxygen levels in the Hypoxystation can be reliably and accurately adjusted to below 1%, reflecting the high metabolism, low perfusion tumor microenvironment.

 

hypoxia

 

1. Inducing Angiogenesis

Angiogenesis and tumor-associated neo-vascularization are central to the progression of cancer, and hypoxia in the fast-growing, poorly perfused tumor setting is one of the main factors driving the formation of new vessels. Hypoxia in the tumor activates the hypoxia stress response, which is mediated at the cellular level by HIF, VEGF and many other cytokines, growth factors and guidance molecules. As a consequence, endothelial cells and pericytes proliferate and form new blood vessels, which are, however, disorderly and leaky, in turn exacerbating hypoxia in the tumor. Cancer treatment strategies striving to normalize tumor vessels for the purpose of improved drug delivery and alleviation of hypoxia in the tumor are showing great promise.

AngiogenesisSliceLITERATURE:

2. Activating Invasion and Metastasis

As with the other Hallmarks of Cancer, metastasis and cancer progression are correlated with low oxygen levels in the tumor. HIF’s activate the expression of more than 1000 genes, numerous of which play a role in inducing genes involved in the EMT, through direct interactions with HRE’s at promotor sites and other mechanisms such as epigenetic alterations, like methylation/demethylation. Hypoxia promotes migration and invasion by facilitating the endothelial-mesenchymal transition, altering cell-cell contacts, and reducing adhesion to the extra-cellular matrix. Cancer cells and neighboring cells such as fibroblasts are all influenced by hypoxia, and all contribute to the restructuring of the tumor microenvironment. The effects of the Hallmarks of Cancer continually perturb and promote each other, as when hypoxia-driven metabolic reprogramming causes acidification of the extracellular microenvironment through increased production and secretion of lactate, in turn augmenting ECM remodeling and immune evasion. Similarly, formation of novel blood vessels enables extravasation and migration of cancer cells to form new tumors.

MetastasisSliceLITERATURE:


capture

The Hallmarks of Cancer: Genome Instability and Immortality

 

Dr Burga Kalz Fuller continues to look at the way the iconic “Hallmarks of Cancer“, as first described by Douglas Hanahan and Robert Weinberg, are influenced by hypoxia in the tumour microenvironment.

Oxygen around and within the tumour cells is central to metabolism, immunology, epigenetics and therapy resistance of all the cancers; in the lab, oxygen levels during tumour cell culture exert effects on metabolism, maintenance, cell yield, and cell survival. That’s why the authentic physiological cell culture conditions in the Hypoxystation help advance research into tumour progression and other events which determine malignancy and outcome of cancer diseases. The Hypoxystation enables glove-less access to cultivate and manipulate cells under physiological conditions, in a HEPA-clean environment.

In this mini-review series, we take a closer look at the way Hypoxystation users worldwide are delineating Hypoxia and the Hallmarks of Cancer. Previously, we had showcased research by Hypoxystation users involved with Avoiding Immune Destruction and Tumour Promoting Inflammation. Next, we want to show the many ways in which Hypoxystation users are researching the Hallmarks Genome Instability and Mutation and Enabling Replicative Immortality. One of those researchers, Dr. David Ho of the University of Miami, presented his results at the Cell Symposium on Cancer, Inflammation and Immunity in San Diego in June.


Let us show you how Don Whitley Scientific can Define Your Environment.

David Ho

Dr. David Ho from the University of Miami with his poster presentation at the Cell Symposium on Cancer, Inflammation and Immunity

GenomeSlice

1. Genome Instability and Mutation

Tumour hypoxia drives genomic instability both by increasing the volume of mutations (DNA strand breaks, base damage, and gene amplification) and by diminishing DNA repair efficiency. The low levels of oxygen typical of the tumor microenvironment decrease transcription of genes related to homologous repair and non-homologous end-joining, leading to the genetic instability observed in hypoxic tumour cells. Hypoxia induces production of reactive oxygen species ROS, which interact with nucleic acids, proteins and lipids, causing cellular damage and mutagenesis. Hypoxic activation of HIF-1 also upregulates expression of certain miRNA’s which suppress DNA repair pathways.

 

LITERATURE:

  • Jiang et al. (2016) “Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality” Int J Radiation Oncol Biol Phys, Vol. 95, No. 2, pp. 772 e781, 2016
    www.redjournal.org/article/S0360-3016(16)00056-0/abstract Hypoxystation user
  • Doherty et al. (2016) “Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand” Nature Scientific Reports 6:22668 (2016)
    www.ncbi.nlm.nih.gov/pmc/articles/PMC4778139/ Hypoxystation user
  • Hunter et al. (2016) “Hypoxia-activated prodrugs: paths forward in the era of personalised medicine” Br J Cancer. 2016 May 10; 114(10): 1071–1077
    www.ncbi.nlm.nih.gov/pmc/articles/PMC4865974/Hypoxystation user
  • Leszczynska et al. (2016) “Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1” Scientific Reports 6:21698 (2016
    www.ncbi.nlm.nih.gov/pmc/articles/PMC4753685/ Hypoxystation user
  • Timpano and Uniacke (2016) “Human Cells Cultured Under Physiological Oxygen Utilize Two Cap-binding Proteins to Recruit Distinct mRNAs for Translation” Journal of Biological Chemistry 291(20):jbc.M116.717363
    www.jbc.org/content/291/20/10772.abstract Hypoxystation user
  • Haider et al. (2016) “Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia“ Genome Biology (2016) 17:140
    www.ncbi.nlm.nih.gov/pubmed/27358048

ImmortalitySlice

2. Enabling Replicative Immortality

Cancer is characterized by a nearly unlimited capacity of the tumour cells to proliferate. Hypoxia in the rapidly growing tumour supports immortalisation of a subset of cancer cells, the “cancer stem cells”. Factors such as hypoxia in the tumour microenvironment derail signals indicating senescence and initiating apoptosis, enabling an immortal lifespan. Telomerase, Notch, c-Myc, and OCT4 mediate the acquisition of a stem cell-like phenotype through down-regulation of differentiation genes and activation of stem genes, generating CSC’s with aggressive properties. These cancer stem cells residing in an hypoxic tumour niche are uniquely resistant to many therapies, where low oxygen promotes stemness, maintenance, and self-renewal of the CSC’s. Metastasis and invasion by these CSC’s induce the formation of secondary tumours, which in most cases dramatically worsen the prognosis for cancer patients.

LITERATURE:

bacr 2017 2

A Manic Month Continues for DWS

June continues to be busy for Don Whitley Scientific, with 6 exhibitions and events attended already. And we have two more to go!

In the month of June, we have attended several meetings and exhibitions that featured topics ranging from pathology, cancer research, LIMS systems and more. We helped to administer the 2017 Practical and Clinical Microbiology of Anaerobes Course, hosted by the UK Anaerobe Reference Unit, Cardiff. It was once again a fantastic success.

Next week (26th-28th June) DWS will be attending the Association for Radiation Research Annual Meeting, which this year focuses on the topic “Improving Radiotherapy Response through Radiation Research” featuring speakers from cancer research institutes from around the world. Don Whitley Scientific will have an exhibition stand at this meeting displaying the Whitley H45 Workstation. There will also be an interactive touchscreen presentation, which allows users to explore the full range of Whitley Workstations.

On 4th July we will also have an exhibition stand at the Society for Applied Microbiology Annual Applied Microbiology Conference at the BALTIC Centre in Gateshead. This meeting will focus on new insights into food safety. Here we will exhibit the ProtoCOL and WASP Touch, two products that provide real benefits in food microbiology applications.

 

Scientist Working in Whitley Workstation

Hypoxia in the Tumour Microenvironment

Hypoxia in the tumour microenvironment affects all the characteristic Hallmarks of Cancer, significantly impacting progression of the cancer and the patients’ prognosis. Inflammation and immunity are both acutely influenced by the low oxygen typical of the tumour microenvironment: hypoxia creates an immune-suppressive network supporting tumour growth and metastasis, and it induces sustained inflammation in a “wound that never heals”.

Cancer research depends on recreating a physiologically accurate environment for cell cultures in the lab, and hypoxia in a closed workstation format such as a Whitley Hypoxystation is the best way to do that. Incubate, image, manipulate and assay – all inside the continuous, reliably stable hypoxic environment. HEPA filtered air scrubbed to ISO 14644 class 3 standards, sterile humidity, and containment options make the Hypoxystation the safest, cleanest workstation available for hypoxic cell culture down to 0.1% O2.

Our Hypoxystation users are investigating all aspects of the Hallmarks of Cancer and how they are shaped by hypoxia. We review their recent research on Avoiding Immune Destruction and Tumour Promoting Inflammation here.

 

hypoxia

CHROMAZONA Automatic Colony Counter

BSMT Annual Scientific Conference

Don Whitley Scientific will be exhibiting at the British Society for Microbial Testing annual conference, held on 12th May at Public Health England in Colindale. 

The BSMT conference is aimed at senior biomedical and clinical scientists, other scientists and medical microbiologists. The meeting will feature talks on a wide range of relevant microbiology topics. The programme features UK and international speakers, who will deliver a range of talks on the day. Don Whitley Scientific will be there to exhibit at the event. Sales representatives will be on hand to discuss how our product range can benefit a range of microbiology applications.

The featured product on the Don Whitley Scientific exhibition stand will be the ChromaZona, an automated microbial identification and antibiotic susceptibility testing (AST) system, which provides faster results for busy laboratories. ChromaZona features automatic comparison with EUCAST MIC breakpoint values and provides fully traceable information for UKAS accreditation.

Also on the Don Whitley Scientific stand is the Whitley Interactive Product Presentation. This interactive display will give delegates the option to explore the full range of Whitley Workstations and access in-depth information on each product. Make sure to visit the Don Whitley Scientific exhibition stand if you are attending this event.

jane-freeman-thumbnail

Why Choose a Whitley Workstation?

There are many reasons to choose a Whitley Workstation when it comes to Anaerobic, Hypoxic or Microaerophilic work. We can discuss these with you anytime, but we also have plenty of satisfied customers who have expressed why using a Whitley Workstation improves their working methods and results.

Over the years, customers have supplied us with many testimonials about their Don Whitley Scientific products. From these we can see that not only have Whitley Workstations become approved by fantastic researchers worldwide, but we can also help promote the amazing work that is done by our customers.

Dr Vaibhao Janbandhu at the Victor Chang Cardiac Research Institute (VCCR) in Sydney, Australia uses a Whitley H35 Hypoxystation in his work on finding new ways to stimulate heart regeneration during ageing and after heart attack. He uses his H35 Hypoxystation to isolate, culture and characterise adult cardiac stem cells. In Dr Janbandhu’s words the H35 is “an integral part of the project to advance the project aims”.

In this video testimonial, Jane Freeman at Leeds General Infirmary explains how her Whitley A95 Workstation improves the working methods in her Clostridium difficile research. Jane reports that she and her team are able to use the workstation for “several hours at a time in relative comfort” and that the workstation is able to house all the technical equipment her team requires. This allows “the whole experiment to be performed in optimum conditions without introducing air at all”. Jane explains that “reliability, versatility and space are the significant benefits of the workstations in our work on Clostridium difficile“.

The Institute of Cancer Research in London is one of the world’s most influential research institutes, with an outstanding record of achievement dating back more than 100 years. At the Institute, George Poulogiannis uses a combination of Whitley i2 Instrument Workstation (with Seahorse XF Analyzer) and Whitley H35 Hypoxystation in his research into breast cancer. Hypoxia is a key factor in the “Hallmarks of Cancer” and this team are studying the role of hypoxia in cell invasion and metastasis, oncogene-induced senescence and resistance to current treatment options. The i2 and H35 replicate a physiologically relevant atmosphere for these studies, enabling consistent and reliable results. This combination of Workstations is also used by Dr Ayse Latif, who is researching gynaecological cancers at The University of Manchester.

Don Whitley Scientific would like to take this opportunity to thank all customers who have provided testimonials. If you would be interested in supplying a testimonial, please contact Alex_Rhodes@dwscientific.co.uk.

Take a look at our other testimonials

capture

HypOxygen at Tumour Microenvironment Workshop in Miami

This article was written by Burga Kalz Fuller, join her and HypOxygen at the 15th International Tumour Microenvironment Workshop in Miami

In most cancers, the hypoxic microenvironment affects the development and progression of tumours, driving alterations in gene expression, metabolism and cell signalling, and significantly influencing the Hallmarks of Cancer. So what about in vitro cancer research, do culture parameters matter? Definitely! Numerous studies have shown that even very brief exposure to ambient oxygen levels and temperature significantly impacts cell culture, behaviour and function of cells in vitro.

HypOxygen will be exhibiting our Hypoxystation at the 15th International Tumour Microenvironment Workshop in Miami from 27th – 29th April. The special focus there is on “Hypoxia, Angiogenesis and Vasculature”, reflecting the critical importance of hypoxia in the context of cancer. With the Hypoxystation, cancer researchers have their finger on the pulse of physiological cell culture.

 

hypoxia

 

The Hypoxystation mimics the hypoxic conditions present in cancer, providing a closed workstation format with contiguous, stable low oxygen down to 0.1%. Precise oxygen, carbon dioxide, and humidity control within a temperature-controlled environment, as well as ample space for cellular manipulation, assays and microscopic observation, allow researchers to recreate physiological conditions. HEPA filtration, sterile steam humidification, and remote parameter monitoring are some of the features that make the Hypoxystation so unique.

Cancer research labs, who use a Hypoxystation to re-create hypoxic conditions in the tumour microenvironment, are publishing brilliant papers which demonstrate the influence of hypoxia on the Hallmarks of Cancer. Metabolic adaptation, sustained growth, resisting cell death, and angiogenesis are just some of the Hallmarks which are affected by hypoxia. Here are some recent highlights:

Hypoxystation users are showing that “culturing cells in ambient air, or ‘normoxia’ is far from physiological.

Visit HypOxygen at the 15th International Tumor Microenvironment Workshop in Miami

Ji Zhang presenting his poster at the Keystone Symposia

Hypoxia and Tumour Metabolism in Whistler with HypOxygen

This article was written by Burga Kalz Fuller of HypOxygen, giving an account of her and HypOxygen’s recent involvement at the Keystone meeting in Whistler, Canada. 

Really, a day in Whistler doesn’t get any better: talks on the newest results on hypoxia and tumour metabolism from morning till night, and outside the snow falls all day, every day. The joint Keystone Symposia on “Adaptations to Hypoxia in Physiology and Disease” and “Tumour Metabolism: Mechanisms and Targets” in Whistler, British Columbia last week featured both skiing and science, and HypOxygen was honoured to be a part of it all.

Joint sessions every day highlighted the many ways in which hypoxia controls gene expression, influences metabolic pathways, and regulates immunological and inflammatory processes, with new data showing how hypoxia affects the Hallmarks of Cancer. North American Hypoxystation users Navdeep Chandel, Nick Denko and Brad Wouters gave talks on respiration, mitochondrial function, and hypoxic regulation of autophagy. European Hypoxystation users Almut Schulze, Janine Erler and Ester Hammond spoke about glucose/lipid metabolism, ECM remodeling and DNA replication in hypoxia. Together, a global community of cancer researchers are targeting hypoxia as a key factor underlying tumour genesis and cancer progression.

Some of our own Hypoxystation users gave poster presentations: Ji Zhang (pictured top left) from Brad Wouters’ lab at Princess Margaret Cancer Center had a poster on “Characterizing oxygen metabolism and hypoxia tolerance in pancreatic ductal adenocarcinoma“, and Sara Timpano from Dr. Jim Uniacke’s lab at University of Guelph presented “Investigating cellular metabolism, DNA damage, and oxidative stress response under physiological oxygen conditions“. Hypoxystation users Navdeep Chandel, Nick Denko and Brad Wouters gave talks on respiration, mitochondrial function, and hypoxic regulation of autophagy, to name just a few.

 

Sarah Timpano presenting her poster at the Keystone Symposia

Sarah Timpano presenting her poster at the Keystone Symposia

We spoke to many of the Keystone attendees about our Whitley i2 Instrument Workstation and the Whitley H35 HEPA Hypoxystation by Don Whitley Scientific. The closed workstation format of the Hypoxystation provides reliable hypoxia down to 0.1% for cells accustomed to the very low oxygen customary in any body tissue, and especially in the tumour microenvironment. Precise oxygen, carbon dioxide, and humidity control within a temperature-controlled environment as well as ample space for cellular manipulation, assays and microscopic observation allow researchers to mimic and monitor physiological conditions. HEPA filtration, sterile steam humidification, and remote parameter monitoring are some of the features that make the Hypoxystation so unique.

As Jim Uniacke states in this video tutorial on creating physiological oxygen, “It is important to keep cells in the hypoxia workstation up until the point of lysis, as oxygen can rapidly alter the biochemical properties of these translation factors.” His lab has been producing exciting results on translation control at hypoxia with the Hypoxystation for several years, earning him the honorary title of “cancer cells’ worst nightmare.” Dr. Uniacke and all the other researchers at the Keystone symposia are working on conquering the nightmare of cancer, Hypoxygen and Don Whitley Scientific want to assist you in that endeavour where possible.

 

IMG_2384

Workstation Installation at Trinity College Dublin

Don Whitley Scientific and our distributor in Ireland, Davidson and Hardy, recently installed equipment at Trinity College Dublin to help with research into cell metabolism.

Stephen Maher, Assistant Professor at Trinity College Dublin first experienced using a Whitley Workstation when working with a group at The University of Hull.  In his Trinity College Dublin lab, Don Whitley Scientific recently installed a Whitley H35 Hypoxystation, to be used connected to a Whitley i2 Instrument Workstation. The combination of these two units should help Stephen Maher greatly in his research.

The Whitley H35 Hypoxystation is ideal for cell and tissue culture researchers who want to accurately control oxygen, carbon dioxide, temperature and humidity. A removable front allows large quantities of samples or pieces of equipment to be placed inside the unit for use within these specific, physiologically relevant conditions. The i2 Workstation was developed in response to a rising number of enquiries from scientists wanting to use Seahorse Extracellular Flux (XF) Analyzers in hypoxic conditions and were dissatisfied with the solutions available. This workstation can be used as a stand-alone unit or connected to a Whitley Hypoxystation via the new Whitley Transfer Tunnel, enabling preparation of cell lines under hypoxic conditions and their transfer directly into the i2 without exposure to air.

 

IMG_2379

 

Explore the Whitley Hypoxystation Range