DON WHITLEY SCIENTIFIC – THE LEADING INTERNATIONAL SUPPLIER TO THE MICROBIOLOGY AND TISSUE CULTURE INDUSTRIES


Contact Us +44 (0) 1274 595728 sales@dwscientific.co.uk

Follow Don Whitley Scientific

Archive for September, 2017

Whitley Hypoxystation

World Heart Day: Hypoxia in Cardiovascular Disease Research

Cardiovascular disease, including heart disease and stroke, is responsible for approximately 1 in 3 deaths in the US, according to the American Heart Association. World Heart Day on 29 September serves as a platform to educate people on how to take control of their heart health.

Don Whitley Scientific and our US/Canadian distributor HypOxygen would like to take this opportunity to highlight cardiovascular research being carried out around the world – and to say “thank you for being committed to our health.”

Adverse cardiac remodeling after infarction exacerbates myocardial ischemia and increases the likelihood of heart failure. Revuelta-Lopez et al. in Spain present new data showing that in the hypoxic areas of the infarct zone, expression of low-density lipoprotein receptor-related protein 1 (LRP1) is linked to activation of Matrix metalloproteinase (MMP) through Pyk2 phosphorylation, and propose that LRP1 modulation may be a very effective pharmacological target in heart disease. Their H35 Hypoxystation with its controlled low oxygen environment creates physiologically more relevant parameters for cell culture, mimicking ischemia/reperfusion events.

Hypothesizing that Tumor necrosis factor-Related Apoptosis-Inducing Ligand plays a role in ischemic injury during acute myocardial infarction, Jiang et al. have found evidence for a novel immune regulatory mechanism involving TRAIL, ER stress and NF-κB signaling pathways. Culturing their cells in the Hypoxystation H35 at 0.3% oxygen allowed the lab to simulate the ischemia/reperfusion processes that cause cardiomyocyte loss and increase mortality in Coronary Heart Disease.

Hypoxia in the embryonic environment supports maintenance of a primitive glycosaminoglycan-rich heart valve matrix, the specific composition of which determines proper function, and as hypoxia decreases after birth, the extracellular matrix matures. Amofa et al. at Cincinnati’s Children’s Medical Center, using the H35 Hypoxystation, provide new data that exposure of adult heart tissue to hypoxia induces hyaluronan remodeling, GAG accumulation, and degeneration of the extracellular matrix in the heart valve, effects that are implicated in Myxomatous mitral valve disease.

Dr. Michael Cross, Molecular and Clinical Pharmacology Department, University of Liverpool, says of his work with cardiac spheroids : “The H35 allows us to generate oxygen levels that reflect the in vivo physiology these cells would be exposed to. We chose the Hypoxystation with its oxygen profiling feature, which allows us to recreate cycles of ischemia, where oxygen levels typically sink to 1-3%”.

Revuelta-Lopez et al 2017

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image from: Revuelta-Lopez et al. “Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in left ventricular remodelling after myocardial infarction” J Cell Mol Med. 2017 Sep;21(9):1915-1928

 

Amofa et al 2017

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypoxia increases GAGs, Sox9 nuclear localization and Hyal2 expression in cAVOCs.

Image from: Amofa et al. (2017) “Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves” Am J Physiol Heart Circ Physiol. 2017 Aug 25:ajpheart.00209.2017

 

 

 

DWS Exhibit at IBMS 2017

The Don Whitley Scientific team are at IBMS this week, pictured here at our exhibition stand, demonstrating the A35 Anaerobic Workstation, WASP Flo for WASPLab™, and Chromazona. To learn more about these and our extensive range of other products, come along to stand 407 and talk to one of our Product Specialists.

You could also take part in our competition – we are celebrating 40 years in business and would like you to help us commemorate this milestone with a fun quiz and the chance to win £40 worth of Love2Shop vouchers.

 

 

Celebrating 40 Years Graphic

Celebrate with DWS and Win! – IBMS 2017

Visit the Don Whitley Scientific stand at this year’s IBMS Congress and enter our fun quiz to win £40 worth of shopping vouchers

If you are attending this year’s Biomedical Science Congress then come and take part in our competition – we’re celebrating being in business for 40 years. 40 years serving science is quite an achievement and we would like you to help us commemorate this corporate milestone with a fun quiz!

Ask at stand 407 for an entry form.

The entry form features 6 simple questions about Don Whitley Scientific’s history: from humble origins to the state-of-the-art products and services we offer today.

The first correct entry drawn each day (25th, 26th + 27th September) wins £40 worth of Love2Shop vouchers.

We will contact all winners by phone or email so you can come and collect your prize or arrange to have it delivered to you.

You will also receive a Don Whitley Scientific pen just for entering the quiz.

GOOD LUCK

Don Whitley Scientific will be exhibiting at IBMS next week from 24th – 27th September. Visit our stand to see what products we have on show and join us in our 40 year’s serving science celebration

Clostridium difficile studies can be done in a Whitley Workstation

Hallmarks of Cancer: Sustaining Growth and Resisting Cell Death

In part four of our mini-series describing “Hypoxia and the Hallmarks of Cancer”, we look more closely at how researchers are using the Hypoxystation to delineate the Hallmarks Sustaining Growth and Resisting Cell Death.

 

 

 

 

 

Hallmarks of Cancer

Resisting Cell Death

The ability of cells to resist cell death under hypoxic conditions is central to the progression of cancer and the acquisition of resistance to chemotherapy so frequently encountered in tumors. Hypoxia in the tumor microenvironment exerts selective pressure favoring cells that have lost the functionality of apoptosis genes and can expand uncontrollably.  Hypoxia also contributes to survival by inducing autophagy, in a pathway involving HIF-1, beclin, BNIP3 and BNIP3L, in which cellular autophagy acts to recycle cellular organelles, satisfy metabolic demand and improve hypoxic tolerance.  HIF-1 mediates cell-cycle retardation and arrest, causing hypoxic tumor cells to become resistant to radiotherapies. NF-κB, through its effects on myriad transcription factors, for example through inhibition of cell death signalling, is activated by hypoxia and reactive oxygen species, and also promotes cell survival.

Sustaining Growth

Cancer is essentially based on the cells’ inability to “stop” when suppressors signal an end to growth, and the compunction to “go” despite a lack of bonafide growth signals. Hypoxia in the context of cancer, in precipitating genomic instability and mutation, results in numerous inactive tumor suppressor genes and activated growth factor genes, such that the combination of constitutive proliferative signaling and mutated cancer genes leads to sustained growth. HIF and NF-κB regulated pathways involving Notch, mTOR, WNT11, CAIX, and IGF-1, among many others, contribute to sustained growth in cancer as regulation of proliferation derails. Induced by hypoxia-regulated proteins, anabolic pathways for nucleotide and lipid synthesis are ramped up and enable the rapid proliferation typical of cancer.

SustainingGrowthSliceLITERATURE:

 

 

 

 

Celebrating 40 Years Graphic

Invitation to Don Whitley Scientific’s birthday celebrations

Your Invitation

Don Whitley Scientific has now been in business for 40 years and will be celebrating this milestone achievement during the IBMS Congress 2017.

On Monday, 25th September from 17:00 to 18:00 we will be hosting a drinks reception on Stand 407, Hall 3 and would be very pleased if you could join us.

If you are able to attend, please RSVP to sales@dwscientific.co.uk before 18th September (to help us with catering requirements).

 

The IBMS Congress is held at the International Convention Centre in Birmingham from 25th to 27th September 2017.

 

We look forward to seeing you.